Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych

Justyna Cembrzyńska

Zakład Mechaniki Kwantowej Uniwersytet Mikołaja Kopernika w Toruniu

9 września 2015

- efektywne zastosowanie metody IH-FS-CC do opisu PEC;
- rozwój metody IH-FS-CC poprzez opracowanie i zaimplementowanie nowych modeli przybliżonych;

Metoda sprzężonych klasterów w ujęciu przestrzeni Focka (FS-CC)

Metoda sprzężonych klasterów:

• podejście jednoreferencyjne (CC):

$$egin{aligned} H \ket{\Psi_0} &= E_0 \ket{\Psi_0} \ & \ket{\Psi_0} &= e^{ op} \ket{\Phi_0} \end{aligned}$$

• podejście wieloreferencyjne (FS-CC):

$$egin{aligned} & H\Psi_k = E_k\Psi_k, & k=1,...,m_0 \ & H_{eff}\Psi_k^0 = E_k\Psi_k^0 \ & \Psi_k^0 = \sum\limits_{m=1}^{m_0} C_{mk}\Phi_m \end{aligned}$$

Wady metody FS-CC:

- problem ze zbieżnością;
- problem ze stanami intruderowymi;
- problem z rozwiązaniami alternatywnymi;

Metoda FS-CC w formalizmie hamiltonianu pośredniego (IH-FS-CC)

Metoda FS-CC

Justyna Cembrzyńska Seminarium ISDMP, Toruń

Metoda FS-CC

ujęcie standardowe

Justyna Cembrzyńska Seminarium ISDMP, Toruń

Metoda FS-CC

iteracyjne rozwiązywanie równań

ujęcie standardowe

ujęcie w formalizmie hamiltonianu pośredniego

Metoda FS-CC

ujęcie standardowe

iteracyjne rozwiązywanie równań ujęcie w formalizmie hamiltonianu pośredniego diagonalizacja specjalnie skonstruowanej macierzy

wartości własne

Rezultaty:

- eliminacja problemów ze stanami intruderowymi;
- rozwiązanie problemu ze zbieżnością;
- brak problemu z alternatywnymi rozwiązaniami;
- L. Meissner, J. Chem. Phys., 108, 9227 (1998).

Opis krzywych energii potencjalnej (PEC) metodą IH-FS-CC

Dysocjacja

podejście standardowe DIP podwójny potencjał jonizacji

PEC

PEC

WNIOSKI:

- zastosowanie schematu DIP pozwala na uzyskanie PEC w całym zakresie odległości międzyjądrowych;
- metoda jest rozmiarowo ekstensywna;
- brak problemów ze zbieżnością i stanami intruderowymi;

Perturbacyjne oszacowanie efektów trójciałowych w metodzie IH-FS-CC

Motywacja

Rysunek 1: Wertykalne energie wzbudzeń dla cząsteczki N₂ uzyskane metoda IH-FS-CCSD oraz IH-FS-CCSDT przy użyciu bazy aug-cc-pVTZ. Wyniki dla dwóch przestrzeni odniesienia -(4,4) oraz (14,4) - ogólnie (m,n) gdzie m oznacza liczbę najniższych niezajętych aktywnych poziomów oraz n liczbę najwyższych zajętych aktywnych poziomów.

Nowe modele IH-FS-CCSD $_{\Delta}$ T – teoria

Kroki IH-FS-CCSD $_{\Delta}$ T

zdiagonalizowanie macierzy hamiltonianu pośredniego [IH-FS-CCSD] wartości i wektory własne odtworzenie macierzy hamiltonianu efektywnego [FS-CCSD] nieiteracyjne włączenie efektów trójciałowych opartych np. na rachunku zaburzeń Møllera-Plesseta

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki N₂ (R=2.068 a_0) obliczone w bazie cc-pVDZ (zamrożono dwa najniżej leżące orbitale, przestrzeń aktywna dla metody IH-FS-CC (2,4); w nawiasach podano odchylenie od FCI).

Stan	EON	1-CC		IH-F	S-CC		Ekcn a	ECIP
Jian	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	Eksp.	I CI
${}^{1}\Pi_{g}$	9,665 (0,081)	9,593 (0,009)	9,409 (-0,175)	9,525 (-0,059)	9,481 (-0,103)	9,621 (0,037)	9,31	9,584
${}^{1}\Sigma_{u}^{-}$	10,465 (0,136)	10,333 (0,004)	10,315 (-0,014)	10,322 (-0,007)	10,420 (0,091)	10,327 (-0,002)	9,92	10,329
$^{1}\Delta_{u}$	10,898 (0,180)	10,726 (0,008)	10,792 (0,074)	10,746 (0,028)	10,844 (0,126)	10,722 (0,004)	10,27	10,718
${}^{1}\Pi_{u}$	14,009 (0,401)	13,661 (0,053)	14,010 (0,402)	13,856 (0,248)	13,813 (0,205)	13,784 (0,176)	12,78	13,608
MAE	0,200	0,019	0,166	0,086	0,131	0,055		

^a J. Oddershede, N.E. Griiner, G.H.F. Diercksen, Chem. Phys., 97, 303 (1985).

^b O. Christiansen, H. Koch, P. Jørgensen, J. Olsen, Chem. Phys. Lett., 256, 185 (1996).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki N₂ (R=2.068 a_0) obliczone w bazie cc-pVDZ (zamrożono dwa najniżej leżące orbitale, przestrzeń aktywna dla metody IH-FS-CC (2,4); w nawiasach podano odchylenie od FCI).

Stop	EON	1-CC		IH-F	S-CC		Ekcn a	ECIP
Jian	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	Eksp.	I CI
${}^{1}\Pi_{g}$	9,665 (0,081)	9,593 (0,009)	9,409 (-0,175)	9,525 (-0,059)	9,481 (-0,103)	9,621 (0,037)	9,31	9,584
${}^{1}\Sigma_{u}^{-}$	10,465 (0,136)	10,333 (0,004)	10,315 (-0,014)	10,322 (-0,007)	10,420 (0,091)	10,327 (-0,002)	9,92	10,329
$^{1}\Delta_{u}$	10,898 (0,180)	10,726 (0,008)	10,792 (0,074)	10,746 (0,028)	10,844 (0,126)	10,722 (0,004)	10,27	10,718
${}^{1}\Pi_{u}$	14,009 (0,401)	13,661 (0,053)	14,010 (0,402)	13,856 (0,248)	13,813 (0,205)	13,784 (0,176)	12,78	13,608
MAE	0,200	0,019	0,166	0,086	0,131	0,055		

^a J. Oddershede, N.E. Griiner, G.H.F. Diercksen, Chem. Phys., 97, 303 (1985).

^b O. Christiansen, H. Koch, P. Jørgensen, J. Olsen, Chem. Phys. Lett., 256, 185 (1996).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla atomu Ne obliczone w bazie aug-cc-pVDZ (przestrzeń aktywna dla metody IH-FS-CC (4,3); w nawiasach podano odchylenie od FCI).

Stop	EON	I-CC		IH-F	S-CC		ECIª
JLan	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	FCI
${}^{1}P^{0}$	19,041 (-0,206)	19,207 (-0,040)	18,991 (-0,256)	18,928 (-0,319)	19,127 (-0,120)	19,203 (-0,044)	19,247
^{1}D	20,662 (-0,217)	20,841 (-0,038)	20,689 (-0,190)	20,543 (-0,336)	20,788 (-0,091)	20,844 (-0,035)	20,879
^{1}P	20,751 (-0,227)	20,940 (-0,038)	20,757 (-0,221)	20,639 (-0,339)	20,884 (-0,094)	20,946 (-0,032)	20,978
¹ <i>S</i>	22,738 (-0,188)	22,843 (-0,083)	22,673 (-0,253)	22,962 (0,036)	23,207 (0,281)	22,790 (-0,136)	22,926
MAE	0,210	0,050	0,230	0,257	0,146	0,062	

^a H. Larsen, K. Hald, J. Olsen, P. Jørgensen, J. Chem. Phys., 115, 3015 (2001).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla atomu Ne obliczone w bazie aug-cc-pVDZ (przestrzeń aktywna dla metody IH-FS-CC (4,3); w nawiasach podano odchylenie od FCI).

Cton	EON	1-CC		IH-F	S-CC		ECIA
Stan	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	FCI"
${}^{1}P^{0}$	19,041 (-0,206)	19,207 (-0,040)	18,991 (-0,256)	18,928 (-0,319)	19,127 (-0,120)	19,203 (-0,044)	19,247
^{1}D	20,662 (-0,217)	20,841 (-0,038)	20,689 (-0,190)	20,543 (-0,336)	20,788 (-0,091)	20,844 (-0,035)	20,879
^{1}P	20,751 (-0,227)	20,940 (-0,038)	20,757 (-0,221)	20,639 (-0,339)	20,884 (-0,094)	20,946 (-0,032)	20,978
¹ <i>S</i>	22,738 (-0,188)	22,843 (-0,083)	22,673 (-0,253)	22,962 (0,036)	23,207 (0,281)	22,790 (-0,136)	22,926
MAE	0,210	0,050	0,230	0,257	0,146	0,062	

^a H. Larsen, K. Hald, J. Olsen, P. Jørgensen, J. Chem. Phys., 115, 3015 (2001).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki CH₂ (R = 1.102 Å, $A = 104.7^{\circ}$) obliczone w bazie 6 – $31G^{*}$ (funkcje kartezjańskie, zamrożono najniższy i najwyższy orbital, zastosowano poziomy aktywne (3,2) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

C+an	EON	1-CC		IH-I	FS-CC		ECIA
Stall	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	- FCI
${}^{1}B_{1}$	1,668 (-0,011)	1,678 (-0,001)	1,512 (-0,167)	1,400 (-0,279)	1,531 (-0,148)	1,683 (0,004)	1,679
${}^{1}A_{2}$	6,101 (0,008)	6,092 (-0,001)	6,052 (-0,040)	5,880 (-0,212)	6,003 (-0,089)	6,091 (-0,002)	6,093
${}^{1}A_{1}$	9,120 (0,067)	9,056 (0,003)	9,161 (0,109)	9,075 (0,022)	9,108 (0,055)	9,054 (0,001)	9,053
MAE	0,029	0,002	0,105	0,171	0,098	0,002	

^a S. Hirata, M. Nooijen, R.J. Bartlett, Chem. Phys. Lett., 326, 255 (2000).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki CH₂ (R = 1.102 Å, $A = 104.7^{\circ}$) obliczone w bazie $6 - 31G^{*}$ (funkcje kartezjańskie, zamrożono najniższy i najwyższy orbital, zastosowano poziomy aktywne (3,2) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Cton	EON	1-CC		IH-F	S-CC		ГСІА
Stan	SD	SDT	SD	$SD_{\Delta^{(1,1)}}T$	SD∆T	SDT	- FCI
${}^{1}B_{1}$	1,668 (-0,011)	1,678 (-0,001)	1,512 (-0,167)	1,400 (-0,279)	1,531 (-0,148)	1,683 (0,004)	1,679
${}^{1}A_{2}$	6,101 (0,008)	6,092 (-0,001)	6,052 (-0,040)	5,880 (-0,212)	6,003 (-0,089)	6,091 (-0,002)	6,093
${}^{1}A_{1}$	9,120 (0,067)	9,056 (0,003)	9,161 (0,109)	9,075 (0,022)	9,108 (0,055)	9,054 (0,001)	9,053
MAE	0,029	0,002	0,105	0,171	0,098	0,002	

^a S. Hirata, M. Nooijen, R.J. Bartlett, Chem. Phys. Lett., 326, 255 (2000).

WNIOSKI:

- podejście perturbacyjne nie daje satysfakcjonujących wyników – rezultaty o gorszej dokładności niż IH-FS-CCSD;
- poprawa wyników tylko dla niektórych układów i stanów w stosunku do IH-FS-CCSD;

Selektywny wybór trójciałowych operatorów klasterowych w metodzie IH-FS-CC

Motywacja

Motywacja

stan podstawowy

Nowe modele IH-FS-CCSDt – teoria

- sektor (0,0) stan podstawowy CCSDT ⇒ CCSD lub CCSDT-3;
- sektor (0,1) potencjał jonizacji IH-FS-CCSDT;
- sektor (1,0) powinowactwo elektronowe IH-FS-CCSDT;
- sektor (1,1) energia wzbudzenia IH-FS-CCSD;

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki N₂ (R= $2.068 a_0$) obliczone w bazie cc-pVDZ (zamrożono dwa najniżej leżące orbitale, zastosowano poziomy aktywne (2,4) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Stan	EON	1-CC			IH-FS-C	C		Ekcn a	ECIP
Stall	SD	SDT	SD	SDt_{SD}	SDt_{SDT-3}	SDt_{SDT}	SDT	– Eksp.	FCI
$^{1}\Pi_{g}$	9,665 (0,081)	9,593 (0,009)	9,409 (-0,175)	9,338 (-0,246)	9,538 (-0,046)	9,555 (-0,029)	9,621 (0,037)	9,31	9,584
${}^{1}\Sigma_{u}^{-}$	10,465 (0,136)	10,333 (0,004)	10,315 (-0,014)	10,087 (-0,242)	10,331 (0,002)	10,353 (0,024)	10,327 (-0,002)	9,92	10,329
$^{1}\Delta_{u}$	10,898 (0,180)	10,726 (0,008)	10,792 (0,074)	10,475 (-0,243)	10,723 (0,005)	10,744 (0,026)	10,722 (0,004)	10,27	10,718
¹∏"	14,009 (0,401)	13,661 (0,053)	14,010 (0,402)	13,716 (0,108)	13,921 (0,313)	13,940 (0,332)	13,784 (0,176)	12,78	13,608
MAE	0,200	0,019	0,166	0,210	0,091	0,103	0,055		

^a J. Oddershede, N.E. Griiner, G.H.F. Diercksen, Chem. Phys., 97, 303 (1985).

^b O. Christiansen, H. Koch, P. Jørgensen, J. Olsen, Chem. Phys. Lett., 256, 185 (1996).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki N₂ (R= $2.068 a_0$) obliczone w bazie cc-pVDZ (zamrożono dwa najniżej leżące orbitale, zastosowano poziomy aktywne (2,4) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Stan	EON	1-CC			IH-FS-CC			Ekce a	ECIP
Stall	SD	SDT	SD	SDt_{SD}	$SDt_{\text{SDT}-3}$	SDt_{SDT}	SDT	– Eksp.	FCI
$^{1}\Pi_{g}$	9,665 (0,081)	9,593 (0,009)	9,409 (-0,175)	9,338 (-0,246)	9,538 (-0,046)	9,555 (-0,029)	9,621 (0,037)	9,31	9,584
${}^{1}\Sigma_{u}^{-}$	10,465 (0,136)	10,333 (0,004)	10,315 (-0,014)	10,087 (-0,242)	10,331 (0,002)	10,353 (0,024)	10,327 (-0,002)	9,92	10,329
$^{1}\Delta_{u}$	10,898 (0,180)	10,726 (0,008)	10,792 (0,074)	10,475 (-0,243)	10,723 (0,005)	10,744 (0,026)	10,722 (0,004)	10,27	10,718
¹∏"	14,009 (0,401)	13,661 (0,053)	14,010 (0,402)	13,716 (0,108)	13,921 (0,313)	13,940 (0,332)	13,784 (0,176)	12,78	13,608
MAE	0,200	0,019	0,166	0,210	0,091	0,103	0,055		

^a J. Oddershede, N.E. Griiner, G.H.F. Diercksen, Chem. Phys., 97, 303 (1985).

^b O. Christiansen, H. Koch, P. Jørgensen, J. Olsen, Chem. Phys. Lett., 256, 185 (1996).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla atomu Ne obliczone w bazie aug-cc-pVDZ (zastosowano poziomy aktywne (4,3) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Stan	EON	I-CC			IH-FS-CC			ECIª
Jtall	SD	SDT	SD	SDt_{SD}	SDt_{SDT-3}	SDt_{SDT}	SDT	
${}^{1}P^{0}$	19,041	19,207	18,991	19,163	19,170	19,172	19,203	19,247
	(-0,206)	(-0,040)	(-0,256)	(-0,084)	(-0,077)	(-0,075)	(-0,044)	
^{1}D	20,662	20,841	20,689	20,851	20,864	20,865	20,844	20,879
	(-0,217)	(-0,038)	(-0,190)	(-0,028)	(-0,015)	(-0,014)	(-0,035)	
^{1}P	20,751	20,940	20,757	20,931	20,944	20,945	20,946	20,978
	(-0,227)	(-0,038)	(-0,221)	(0,047)	(-0,035)	(-0,033)	(-0,032)	
^{1}S	22,738	22,843	22,673	22,989	22,969	22,971	22,790	22,926
	(-0,188)	(-0,083)	(-0,253)	(0,063)	(0,043)	(0,045)	(-0,136)	
MAE	0,210	0,050	0,230	0,055	0,042	0,042	0,062	

^a H. Larsen, K. Hald, J. Olsen, P. Jørgensen, J. Chem. Phys., 115, 3015 (2001).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla atomu Ne obliczone w bazie aug-cc-pVDZ (zastosowano poziomy aktywne (4,3) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Stan	EON	I-CC			IH-FS-CC			ECIa
Jtall	SD	SDT	SD	SDt_{SD}	$SDt_{\text{SDT}-3}$	SDt_{SDT}	SDT	
${}^{1}P^{0}$	19,041	19,207	18,991	19,163	19,170	19,172	19,203	19,247
	(-0,206)	(-0,040)	(-0,256)	(-0,084)	(-0,077)	(-0,075)	(-0,044)	
^{1}D	20,662	20,841	20,689	20,851	20,864	20,865	20,844	20,879
	(-0,217)	(-0,038)	(-0,190)	(-0,028)	(-0,015)	(-0,014)	(-0,035)	
^{1}P	20,751	20,940	20,757	20,931	20,944	20,945	20,946	20,978
	(-0,227)	(-0,038)	(-0,221)	(0,047)	(-0,035)	(-0,033)	(-0,032)	
^{1}S	22,738	22,843	22,673	22,989	22,969	22,971	22,790	22,926
	(-0,188)	(-0,083)	(-0,253)	(0,063)	(0,043)	(0,045)	(-0,136)	
MAE	0,210	0,050	0,230	0,055	0,042	0,042	0,062	

^a H. Larsen, K. Hald, J. Olsen, P. Jørgensen, J. Chem. Phys., 115, 3015 (2001).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki CH₂ (R = 1.102 Å, $A = 104.7^{\circ}$) obliczone w bazie 6 – 31*G*^{*} (funkcje kartezjańskie, zamrożono najniższy i najwyższy orbital, zastosowano poziomy aktywne (3,2) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Stan	EON	I-CC			IH-FS-CO	C		ECIª
Jian	SD	SDT	SD	SDt_{SD}	SDt_{SDT-3}	SDt_{SDT}	SDT	- 101
${}^{1}B_{1}$	1,668 (-0,011)	1,678 (-0,001)	1,512 (-0,167)	1,640 (-0,039)	1,698 (0,020)	1,718 (0,039)	1,683 (0,004)	1,679
${}^{1}A_{2}$	6,101 (0,008)	6,092 (-0,001)	6,052 (-0,040)	6,092 (-0,001)	6,151 (0,059)	6,171 (0,078)	6,091 (-0,002)	6,093
${}^{1}A_{1}$	9,120 (0,067)	9,056 (0,003)	9,161 (0,109)	8,996 (-0,057)	9,062 (0,009)	9,083 (0,030)	9,054 (0,001)	9,053
MAE	0,029	0,002	0,105	0,032	0,029	0,049	0,002	

^a S. Hirata, M. Nooijen, R.J. Bartlett, Chem. Phys. Lett., 326, 255 (2000).

Tabela: Singletowe, wertykalne energie wzbudzeń [eV] dla cząsteczki CH₂ (R = 1.102 Å, $A = 104.7^{\circ}$) obliczone w bazie 6 – 31*G*^{*} (funkcje kartezjańskie, zamrożono najniższy i najwyższy orbital, zastosowano poziomy aktywne (3,2) dla metod IH-FS-CC; w nawiasach podano odchylenie od FCI).

Cham	EON	1-CC			IH-FS-CC			EC14
Stan	SD	SDT	SD	SDt_{SD}	SDt_{SDT-3}	SDt_{SDT}	SDT	- FCI
${}^{1}B_{1}$	1,668 (-0,011)	1,678 (-0,001)	1,512 (-0,167)	1,640 (-0,039)	1,698 (0,020)	1,718 (0,039)	1,683 (0,004)	1,679
${}^{1}A_{2}$	6,101 (0,008)	6,092 (-0,001)	6,052 (-0,040)	6,092 (-0,001)	6,151 (0,059)	6,171 (0,078)	6,091 (-0,002)	6,093
${}^{1}A_{1}$	9,120 (0,067)	9,056 (0,003)	9,161 (0,109)	8,996 (-0,057)	9,062 (0,009)	9,083 (0,030)	9,054 (0,001)	9,053
MAE	0,029	0,002	0,105	0,032	0,029	0,049	0,002	

^a S. Hirata, M. Nooijen, R.J. Bartlett, Chem. Phys. Lett., 326, 255 (2000).

WNIOSKI:

- selektywny wybór operatorów trójciałowych znacząco poprawia dokładność wyników względem IH-FS-CCSD;
- otrzymane rezultaty pozostają w bardzo dobrej zgodności z wartościami FCI;

 metoda IH-FS-CCSD oparta na schemacie DIP stanowi bardzo dobre narzędzie do opisu PEC dla stanu podstawowego jak i stanów wzbudzonych;

- metoda IH-FS-CCSD oparta na schemacie DIP stanowi bardzo dobre narzędzie do opisu PEC dla stanu podstawowego jak i stanów wzbudzonych;
- opracowano nowe modele metody IH-FS-CCSDt, które spełniają warunki stawiane na początku;

- metoda IH-FS-CCSD oparta na schemacie DIP stanowi bardzo dobre narzędzie do opisu PEC dla stanu podstawowego jak i stanów wzbudzonych;
- opracowano nowe modele metody IH-FS-CCSDt, które spełniają warunki stawiane na początku;
- nowootrzymane modele dają bardzo dobry jakościowy i ilościowy opis układów atomowych i molekularnych;

Projekt "Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno – przyrodniczych" realizowany w ramach poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

Dziękuję za uwagę

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

34 / 34

Justyna Cembrzyńska

Seminarium ISDMP, Toruń