

Projekt "Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno – przyrodniczych" realizowany w ramach poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

SYNTEZA I BADANIA STRUKTURALNE CYTOTOKSYCZNYCH KARBOKSYLANÓW PLATYNY(II) Z TRIAZOLOPIRYMIDYNAMI

Kamil Hoffmann,^a Joanna Wietrzyk,^b Iwona Łakomska^a

^a Zespół Naukowy Chemia Bionieorganiczna, Katedra Chemii Analitycznej i Spektroskopii Stosowanej, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu ^b Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda, Polska Akademia Nauk we Wrocławiu

Toruń, 9 września 2015

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Od czego wszystko się zaczęło?

cisplatyna cis-[PtCl₂(NH₃)₂]

Kierunki poszukiwania analogów cisplatyny

<u>Dikarboksylany:</u> malonian (mal), bursztynian (succ), glutaran (glut) i cyklobutano-1,1-dikarboksylan (CBDC)

Otrzymane w ramach rozprawy doktorskiej karboksylowe kompleksy Pt(II) i (IV)

Struktura w roztworze ¹⁵N NMR

Struktury krystaliczne kompleksów Pt(II)

[Pt(CBDC)(detp)₂]

[Pt(CBDC)(dbtp)₂]

[Pt(CBDC)(NH₃)(dmtp)]

C3A

N1

N8

C7

Struktura krystaliczna [Pt(CBDC)(dbtp)₂]

Pt1–N3

Pt1-03

Pt1-01

Lipofilowość

Toksyczność *in vitro* – linia BALB/3T3

Cytotoksyczność in vitro – mysi rak gruczołu sutkowego 4T1

cisplatyna ■ karboplatyna ■ oksaliplatyna ■ [Pt(CBDC)(dbtp)2] ■ [Pt(CBDC)(ibmtp)2] ■ [Pt(CBDC)(dmtp)2]

Korelacja logP vs. IC₅₀ wobec komórek 4T1

Fazy cyklu komórkowego

Wpływ kompleksów Pt(II) na cykl komórkowy linii 4T1

Przełamywanie oporności komórek linii A2780cis i OVCAR-3 na cisplatynę

.

Wstępna ocena toksyczności *in vivo* [Pt(CBDC)(dbtp)₂] i [Pt(glut)(dbtp)₂]

<u>Samice szczepu Balb3/C</u>

Droga podania: dootrzewnowo

Wartości LD₅₀: [Pt(glut)(dbtp)₂]: <u>20–30 mg/kg</u> [Pt(CBDC)(dbtp)₂]: <u>>100 mg/kg</u> *Cisplatyna*: 13,6 mg/kg Oksaliplatyna: 19,8 mg/kg

Wstępna ocena toksyczności *in vivo* [Pt(CBDC)(dbtp)₂] i [Pt(glut)(dbtp)₂] - biodystrybucja w nerkach i wątrobie-

6

Podsumowanie

Płaskokwadratowe otoczenie platyny(II) tworzą: <u>chelatowo związany dikarboksylan</u> oraz dwie monodonorowo skoordynowane przez atom azotu N(3) triazolopirymidyny.

Zwiększenie zawady przestrzennej w pozycjach 5,7 pierścienia pirymidynowego powoduje <u>wzrost charakteru lipofilowego</u> i <u>cytotoksyczności *in vitro* karboksylowych kompleksów Pt(II) w szeregu:</u>

Wszystkie <u>cztery</u> dikarboksylowe kompleksy Pt(II) z dbtp są <u>bardziej cytotoksyczne</u> <u>in vitro</u> wobec testowanych komórek nowotworowych niż stosowane nieorganiczne chemioterapeutyki

Wydłużenie alifatycznego łańcucha węglowego dikarboksylanu, generowało zwiększenie lipofilowości oraz właściwości cytotoksycznych kompleksów Pt(II) z dbtp.

Podsumowanie

Kompleksy Pt(II) z dbtp <u>przełamują oporność</u> komórek raka jajnika linii A2780cis i OVCAR-3 na *cisplatynę*.

Nowe dikarboksylowe kompleksy Pt(II) z dbtp, zatrzymują cykl komórkowy linii 4T1 w fazie S, sugerując prawdopodobnie innym mechanizm działania niż stosowanych chemioterapeutyków.

Otrzymane kompleksy Pt(II) charakteryzują się mniejszą toksycznością *in vitro* niż *cisplatyna* i oksaliplatyna.

Wyselekcjonowane do badań na zwierzętach związki [Pt(glut)(dbtp)₂] i [Pt(CBDC)(dbtp)₂] są <u>mniej toksyczne *in vivo* od *cisplatyny* i oksaliplatyny</u>

Kompleks [Pt(CBDC)(dbtp)₂] akumuluje się ponad pięciokrotnie słabiej w wątrobie niż [Pt(glut)(dbtp)₂], co czyni go <u>obiecującym potencjalnym prolekiem</u> i rekomenduje do dalszych badań.

Badania zostały sfinansowane ze środków Narodowego Centrum Nauki w ramach przyznanego grantu PRELUDIUM IV (DEC-2012/07/N/ST5/00221)

Projekt "Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno – przyrodniczych" realizowany w ramach poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

Dziękuję za uwagę

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY